968. The Stereochemistry of Acetylacetone Complexes of Zinc. Part I. The Crystal Structure of Monoaquobisacetylacetonezinc.

By E. L. Lippert and Mary R. Truter.
One of the complexes obtained from an aqueous suspension of zinc hydroxide and acetylacetone has a composition corresponding to

$$
\left(\mathrm{CH}_{3} \cdot \mathrm{CO} \cdot \mathrm{CH} \cdot \mathrm{CO} \cdot \mathrm{CH}_{3}\right)_{2} \mathrm{Zn}, \mathrm{H}_{2} \mathrm{O}
$$

A three-dimensional X-ray crystal-structure analysis of this compound has shown that the zinc atom is 5 -co-ordinated, with the bonds arranged in a trigonal bipyramid. The water molecule and one oxygen atom from each acetylacetone group lie in the equatorial plane; the bond lengths are $\mathrm{Zn}-\mathrm{H}_{2} \mathrm{O}=2.02 \pm 0.03 \AA$ and $\mathrm{Zn}-\mathrm{O}=1.96 \pm 0.02 \AA$. The other oxygen atoms of the chelating acetylacetone groups form the apices of the bipyramid and the $\mathrm{Zn}-\mathrm{O}$ bond length is $2.11 \pm 0.02 \AA$.

The preparation of anhydrous acetylacetonezinc, as described by Morgan and Moss, ${ }^{1}$ is extremely simple. The calculated amount of acetylacetone is added to a hot aqueous suspension of zinc hydroxide, the suspension clears, and as the solution cools crystals of the complex separate. We have repeated this preparation and found that the system is more complicated. Usually we obtained colourless, needle-shaped crystals, type A, which on chemical analysis proved to be the monohydrate of acetylacetonezinc. Although the crystals were stable in air, they decomposed after a few days in the X-ray beam. Some preparations produced less stable, plate-like crystals, type B, which decomposed in a few days in the air and after only a few hours in the X-ray beam; preliminary measurements which are not altogether satisfactory indicate that this compound is probably diaquobisacetylacetonezinc.

This paper describes the crystal structure analysis of the crystals of type A; for each

[^0]zinc atom, there is one water molecule [which we designated $O(1)$] and two acetylacetone groups which we numbered as shown:

Methods and Results
Crystal Data.- $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Zn}, M=281 \cdot 62$, m. p. 131°. Monoclinic, $a=10.91 \pm 0.01, b=$ $5.517 \pm 0.005, c=10.46 \pm 0.01 \AA, \beta=93.6^{\circ} \pm 0.2^{\circ}, U=628 \AA^{3}, D_{m}=1.50$ (by flotation), $Z=2, D_{c}=1 \cdot 49, F(000)=292$. Space group, $P 2_{1}\left(C_{2}{ }^{2}\right.$, No. 4) established after structure analysis. $\mathrm{Cu}-K_{\alpha}$ radiation, single-crystal oscillation and Weissenberg photographs, absorption coefficient, $\mu=29.5 \mathrm{~cm} .^{-1}$.

Structure Determination.-From the systematic absences, ($0 k 0$) with k odd, the space group is not unambiguously determined and may be $P 2_{1}$ or $P 2_{1} / m$. There are two units of $\mathrm{Zn}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}, \mathrm{H}_{2} \mathrm{O}$ per unit cell, which means that all the atoms of one formula unit must be found if the space group is $P 2_{1}$, while if the space group is $P 2_{1} / m$ the zinc atom (and the water molecule) must lie either on a centre of symmetry, e.g., at $0,0,0$, or in the mirror plane at $y=\frac{1}{4}$. Statistical tests are unlikely to provide a reliable differentiation because the scattering power of one of the atoms is much greater than that of the others. ${ }^{2,3}$

A Patterson projection along [010] showed that the zinc atom did not lie on a centre of symmetry and gave the x and z co-ordinates for this atom. Successive Fourier syntheses and difference Fourier syntheses served to locate all the carbon and oxygen atoms. The projection is well resolved as shown in Fig. 1; as every atom in the acetylace tone groups appears, none of them can be related by the mirror plane, and the groups appear too distorted to be lying in the mirror plane parallel to (010). Hence, the space group is $P 2_{1}$.

For the [001] projection, the x co-ordinate for zinc was taken as that determined from the [010] projection, and the y co-ordinate was taken as $0 \cdot 250$ (any value for y may be chosen for one atom in the space group $P 2_{1}$). Structure factors were calculated for this atom only (and so corresponded to a structure with a mirror plane at $y=0.250$) and a Fourier synthesis was carried out; the resulting electron-density projection was difficult to interpret because each atom appeared on both sides of a mirror plane at $y=0.250$; the method of solving this problem has been described for the more complicated case of cholesteryl iodide, ${ }^{4}$ so we give no details here. With the aid of the known x co-ordinates we were able, after several successive structurefactor calculations and Fourier syntheses, to locate the five oxygen atoms and four of the carbon atoms.

We had been unable to locate six of the carbon atoms by two-dimensional methods, so we calculated three-dimensional structure factors from the known co-ordinates of the zinc atom and nine light atoms; at this stage the agreement index, R, was $0.23\left(R=\frac{\sum\left|\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)\right|}{\sum\left|F_{\mathrm{o}}\right|}\right)$. A three-dimensional Fourier difference synthesis gave the difference between the observed and the calculated electron densities throughout the unit cell; six positive peaks appeared in positions which, with the atoms already known, showed a recognisable structure as depicted in projection in Figs. 1 and 2. A view of the molecule along [001] shows (Fig. 3) why we were unable to solve this projection.

Three-dimensional refinement of the co-ordinates of the atoms other than hydrogen was carried out by the method of least squares, and the individual anisotropic thermal motion parameters for each atom were determined. The value of R was reduced to $\mathbf{0} \cdot \mathbf{1 2}$. The observed structure amplitudes and the real and the imaginary parts of the calculated structure factors are given in Table 1. From the final parameters a set of structure factors was also calculated for the reflections that were too weak to be observed; the value of R was 0.09 with $\left|F_{0}\right|$ taken as half the minimum observable.
${ }^{2}$ Hargreaves, Acta Cryst., 1955, 8, 12.
${ }^{3}$ Truter, Cruickshank, a nd Jeffrey, Acta Cryst., in the press.
${ }^{4}$ Carlisle and Crowfoot, Proc. Roy. Soc., 1945, A, 184, 64.

Fig. 1. Projection of the structure along [010]. The molecule shown by full lines corresponds to the coordinates in Table 2; application of the two-fold screw axis (giving the co-ordinates $-x / a$, $\frac{1}{2}+y / b$, $-z / c)$ produces the molecule shown by broken lines.

Fig. 2. Projection of the structure along [100]. Full and broken lines have the same significance as in Fig. 1. The dotted line indicates the hydrogen bond, $2.95 \AA$, from the water molecule in one complex to $\mathrm{O}\left(2^{\prime}\right)$ in another; the other hydrogen bond, $2.67 \AA$, to $\mathrm{O}\left(5^{\prime \prime}\right)$ lies nearly parallel to the [100] axis.

Fig. 3. One molecule seen in projection along [001].

Finally, the structure determination was checked by a complete three-dimensional Fourier difference synthesis. No positive value of the electron-density difference greater than 1 electron \AA^{-3} was found. It was not possible to identify the peaks as hydrogen atoms.

Table 1. Observed structure amplitudes and components of the calculated structure factors ($\times 10$).
(Reflections which were too weak to be observed have been omitted.)
$l \quad\left|F_{\mathrm{o}}\right| \quad\left|F_{\mathrm{c}}\right| \cos \alpha \quad\left|F_{\mathrm{c}}\right| \sin \alpha \quad l \quad\left|F_{\mathrm{o}}\right| \quad\left|F_{\mathrm{c}}\right| \cos \alpha \quad\left|F_{\mathrm{c}}\right| \sin \alpha \quad l \quad\left|F_{\mathrm{o}}\right| \quad\left|F_{\mathrm{c}}\right| \cos \alpha \quad\left|F_{\mathrm{o}}\right| \sin \alpha \quad l \quad\left|F_{\mathrm{o}}\right| \quad\left|F_{\mathrm{c}}\right| \cos \alpha \quad\left|F_{\mathrm{c}}\right| \sin \alpha$

Table 1. (Continued.)

Table 1. (Continued.)

Results.-The final values of the atomic co-ordinates are given in Table 2 as fractions of the unit-cell edges, and in \AA with respect to orthogonal axes parallel to the crystallographic a, b, and c^{*} axes for X^{\prime}, Y^{\prime}, and Z^{\prime} respectively. Table 2 also shows σ, the estimated standard

Table 2. Atomic co-ordinates.

	x / a	y / b	z / c	$X^{\prime}(\AA)$	$\sigma(X)(\AA)$	$Y^{\prime}(\AA)$	$\sigma(Y)(\AA)$	$Z^{\prime}(\AA)$	$\sigma(X)(\AA)$
Zn	0.7843	$0 \cdot 2417$	0.0889	$8 \cdot 499$	0.003	1.333	(0.009)	0.930	0.003
$\mathrm{O}(1)$	0.912	0.505	0.076	$9 \cdot 899$	0.016	2.784	0.025	0.789	0.018
$\mathrm{O}(2)$	0.860	-0.025	$0 \cdot 196$	9-252	0.020	-0.138	0.024	2.043	0.018
$\mathrm{O}(3)$	0.691	$0 \cdot 363$	$0 \cdot 249$	$7 \cdot 373$	$0 \cdot 018$	2.002	0.023	$2 \cdot 602$	0.019
$\mathrm{O}(4)$	0.645	$0 \cdot 359$	-0.015	7.051	0.017	1.983	0.024	-0.158	0.015
$\mathrm{O}(5)$	0.845	0.025	-0.059	9.255	0.015	$0 \cdot 140$	0.023	-0.618	0.015
$\mathrm{C}(2)$	0.949	-0.231	$0 \cdot 373$	$10 \cdot 11$	0.03	-1.27	0.05	$3 \cdot 89$	0.03
C(3)	$0 \cdot 630$	0.475	$0 \cdot 469$	6.57	0.03	$2 \cdot 62$	0.05	$4 \cdot 89$	$0 \cdot 03$
$\mathrm{C}(4)$	0.490	0.368	-0.165	$5 \cdot 46$	0.03	2.03	0.04	-1.72	0.03
$\mathrm{C}(5)$	0.827	-0.275	-0.232	$9 \cdot 18$	0.03	-1.52	0.05	-2.42	$0 \cdot 03$
$\mathrm{C}(22)$	0.862	-0.030	$0 \cdot 324$	$9 \cdot 19$	0.03	-0.17	0.05	$3 \cdot 38$	0.03
$\mathrm{C}(23)$	0.791	$0 \cdot 125$	$0 \cdot 403$	$8 \cdot 37$	0.03	$0 \cdot 69$	0.04	$4 \cdot 21$	0.03
$\mathrm{C}(33)$	0.705	$0 \cdot 293$	$0 \cdot 367$	$7 \cdot 45$	0.03	1.61	0.04	$3 \cdot 83$	0.03
C (44)	0.604	0.276	-0.112	$6 \cdot 67$	0.02	1.52	0.04	$-1 \cdot 17$	0.02
C (45)	0.664	0.074	-0.186	$7 \cdot 37$	0.92	$0 \cdot 41$	0.04	-1.95	0.03
C(55)	0.773	-0.043	-0.155	$8 \cdot 53$	$0 \cdot 03$	-0.24	$0 \cdot 04$	-1.62	0.03

deviations in the co-ordinates; these are actually minimum values because in their calculation it has been assumed that changes in co-ordinates of one atom do not affect those of the other atoms. This is not a valid assumption for a non-centrosymmetrical structure containing a heavy atom ${ }^{5,6}$ because small changes in the position of the heavy atom have a relatively large effect on the phase angles. This uncertainty applies particularly to the y co-ordinates because there is no fixed origin in this direction and atoms can be located only in relation to one another; it is best to choose the heaviest atom as the origin. In principle, ${ }^{5}$ the true values of the standard deviations can be calculated; for a very simple structure, ${ }^{6}$ sodium nitrite, calculation showed that the true standard deviations in the parameters of the oxygen and nitrogen atoms were double the apparent values. Unfortunately, this structure has too many parameters for the calculation to be possible even on the Ferranti Pegasus electronic computer.

Table 3 shows the thermal parameters, and their minimum standard deviations; U_{11}, U_{22}, and U_{33} are the mean square amplitudes of vibration parallel to the a^{*}, b^{*}, and c^{*} axes respectively and with U_{12}, U_{23}, and U_{13} give the magnitude and orientation of the ellipsoid of vibration with respect to the crystallographic axes.

Table 3. Thermal parameters (all units are $10^{-3} \AA^{2}$).

	U_{11}	σ	U_{22}	σ	U_{33}	σ	U_{12}	σ	U_{23}	σ	U_{13}	σ
Zn	$\mathbf{3 8}$	1	14	2	$\mathbf{3 6}$	1	-21	2	23	2	-8	1
$\mathrm{O}(1)$	33	8	40	17	54	10	-9	10	-9	12	-7	7
$\mathrm{O}(2)$	77	13	10	13	51	10	-5	12	25	11	-29	9
$\mathrm{O}(3)$	48	9	10	12	59	11	-7	10	15	11	-2	8
$\mathrm{O}(4)$	50	9	36	15	34	8	2	10	27	9	-24	7
$\mathrm{O}(5)$	39	8	19	13	34	8	-0	10	12	10	-9	6
$\mathrm{C}(2)$	67	17	42	30	70	17	22	23	-11	26	-27	14
$\mathrm{C}(3)$	55	16	80	37	65	17	44	22	-49	24	-14	14
$\mathrm{C}(4)$	57	16	20	22	63	17	-3	17	-16	18	-23	13
$\mathrm{C}(5)$	70	17	49	25	56	14	45	26	-21	26	5	12
$\mathrm{C}(22)$	54	15	72	35	44	14	-9	20	45	19	6	12
$\mathrm{C}(23)$	66	17	50	25	35	12	50	18	1	15	-5	11
$\mathrm{C}(33)$	55	14	66	39	62	15	-44	21	45	23	-30	12
$\mathrm{C}(44)$	28	9	72	30	39	11	37	18	-28	21	4	8
$\mathrm{C}(45)$	37	12	55	29	67	18	-29	17	36	21	-25	12
$\mathrm{C}(55)$	80	20	10	19	57	16	25	19	-13	18	-13	15

In Table 4 the bond lengths and angles are given; the minimum standard deviations derived from those in Table 2 are, for the bond lengths: $\mathrm{Zn}-\mathrm{O} \pm 0.02 \AA, \mathrm{O}-\mathrm{C} \pm 0.03 \AA, \mathrm{C}-\mathrm{C} \pm 0.05 \AA$; and for the angles: $\mathrm{O}-\mathrm{Zn}-\mathrm{O} \pm 1^{\circ}, \mathrm{Zn}-\mathrm{O}-\mathrm{C} \pm 2^{\circ}, \mathrm{O}-\mathrm{C}-\mathrm{C} \pm 2 \cdot 5^{\circ}, \mathrm{C}-\mathrm{C}-\mathrm{C} \pm 3^{\circ}$.

5 Cruickshank, Acta Cryst., 1952, 5, 511.
${ }_{6}$ Truter, Acta Cryst., 1954, 7, 73.

Table 4. Bond lengths and angles.

$\mathrm{Zn}-\mathrm{O}(1)$	$2.02 \AA$	$\mathrm{O}(1)-\mathrm{Zn}-\mathrm{O}(2)$	108°	$\mathrm{Zn}-\mathrm{O}(2)-\mathrm{C}(22)$	$124{ }^{\circ}$
$\mathrm{Zn}-\mathrm{O}(2)$	1.99	$\mathrm{O}(1)-\mathrm{Zn}-\mathrm{O}(4)$	104	$\mathrm{Zn}-\mathrm{O}(3)-\mathrm{C}(33)$	129
$\mathrm{Zn}-\mathrm{O}(3)$	$2 \cdot 13$	$\mathrm{O}(1)-\mathrm{Zn}-\mathrm{O}(3)$	101	$\mathrm{Zn}-\mathrm{O}(4)-\mathrm{O}(44)$	127
$\mathrm{Zn}-\mathrm{O}(4)$	1.92	$\mathrm{O}(1)-\mathrm{Zn}-\mathrm{O}(5)$	96	$\mathrm{Zn}-\mathrm{O}(5)-\mathrm{C}(55)$	123
$\mathrm{Zn}-\mathrm{O}(5)$	$2 \cdot 09$				
Zn-O(5)		$\mathrm{O}(2)-\mathrm{Zn}-\mathrm{O}(3)$	90	$\mathrm{O}(2)-\mathrm{C}(22)-\mathrm{C}(2)$	109
$\mathrm{O}(2)-\mathrm{C}(22)$	1.34	$\mathrm{O}(4)-\mathrm{Zn}-\mathrm{O}(5)$	93	$\mathrm{O}(3)-\mathrm{C}(33)-\mathrm{C}(3)$	113
$\mathrm{O}(3)-\mathrm{C}(33)$	$1 \cdot 29$	$\mathrm{O}(2)-\mathrm{Zn}-\mathrm{O}(5)$	82	$\mathrm{O}(4)-\mathrm{C}(44)-\mathrm{C}(4)$	118
$\mathrm{O}(4)-\mathrm{C}(44)$	$1 \cdot 17$	$\mathrm{O}(4)-\mathrm{Zn}-\mathrm{O}(3)$	87	$\mathrm{O}(5)-\mathrm{C}(55)-\mathrm{C}(5)$	113
$\mathrm{O}(5)-\mathrm{C}(55)$	$1 \cdot 29$				
		$\mathrm{O}(2)-\mathrm{Zn}-\mathrm{O}(4)$	148	$\mathrm{O}(2)-\mathrm{C}(22)-\mathrm{C}(23)$	126
$\mathrm{C}(2)-\mathrm{C}(22)$	1.53	$\mathrm{O}(3)-\mathrm{Zn}-\mathrm{O}(5)$	162	$\mathrm{O}(3)-\mathrm{C}(33)-\mathrm{C}(23)$	121
$\mathrm{C}(3)-\mathrm{C}(33)$	1.71			$\mathrm{O}(4)-\mathrm{C}(44)-\mathrm{C}(45)$	125
$\mathrm{C}(4)-\mathrm{C}(44)$	$1 \cdot 42$			$\mathrm{O}(5)-\mathrm{C}(55)-\mathrm{C}(45)$	122
$\mathrm{C}(5)-\mathrm{C}(55)$	1.65				
$\mathrm{C}(23)-\mathrm{C}(22)$	1.45			$\mathrm{C}(2)-\mathrm{C}(22)-\mathrm{C}(23)$	126
$\mathrm{C}(23)-\mathrm{C}(33)$	1.35			$\mathrm{C}(3)-\mathrm{C}(33)-\mathrm{C}(23)$	125
$\mathrm{C}(45)-\mathrm{C}(44)$	1.53			$\mathrm{C}(4)-\mathrm{C}(44)-\mathrm{C}(45)$	117
$\mathrm{C}(45)-\mathrm{C}(55)$	$1 \cdot 37$			$\mathrm{C}(5)-\mathrm{C}(55)-\mathrm{C}(45)$	126
				$\mathrm{C}(44)-\mathrm{C}(45)-\mathrm{C}(55)$	128
				$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(33)$	129

These have been calculated from the results given by the electronic computer to four decimal places, not from the rounded-off values in Table 2.

Another estimate of the uncertainties in the individual bond lengths is the average deviation from the arithmetic mean of the independently determined values for the same kind of bond, this gives: $\mathrm{Zn}-\mathrm{O} \pm 0.03 \AA, \mathrm{O}-\mathrm{C} \pm 0.05 \AA, \mathrm{C}-\mathrm{C} \pm 0.08 \AA$. Similar treatment for the angles gives: $\mathrm{O}-\mathrm{Zn}-\mathrm{O} \pm 2^{\circ}, \mathrm{Zn}-\mathrm{O}-\mathrm{C} \pm 2 \cdot 3^{\circ}, \mathrm{O}-\mathrm{C}-\mathrm{C} \pm 2 \cdot 5^{\circ}, \mathrm{C}-\mathrm{C}-\mathrm{C} \pm 3 \cdot 3^{\circ}$. The average bond

Fig. 4. Average bond lengths and angles around the zinc atom.

lengths and angles round the zinc atom are shown in Fig. 4. It can be seen that the arrangement is that of a distorted trigonal bipyramid. The equatorial plane is defined by the equation

$$
0.390 X^{\prime}-0.437 Y^{\prime}-0.810 Z^{\prime}-1.988 \AA=0
$$

The acetylacetone groups are planar (within $\pm 0.07 \AA$) and the zinc atom is not included in either plane, being $0.3 \AA$ from that of the molecule (23) and $0.4 \AA$ from that of molecule (45). The standard deviations in the bond lengths within the acetylacetone groups are so large that
no deductions can be made from them except that, in so far as the average values (Fig. 5) are reasonable, they confirm the correctness of the structure analysis.

All the intermolecular contacts of less than $3.5 \AA$ were calculated and only six were found. The two shortest are $2.95 \AA$ and $2.67 \AA$, both from the water molecule to other oxygen atoms as shown in Fig. 2, suggesting that these are hydrogen bonds; the angles subtended at the water molecule are $\mathrm{Zn}-\mathrm{O}(1) \cdots \mathrm{O}(2)^{\prime} 117^{\circ}, \mathrm{Zn}-\mathrm{O}(1) \cdots \mathrm{O}(5)^{\prime \prime} 136^{\circ}$, and $\mathrm{O}(2)^{\prime} \cdots \mathrm{O}(1) \cdots \mathrm{O}(5)^{\prime \prime} 102^{\circ}$, which are consistent with hydrogen bonds between the oxygen atoms. Of the other

Fig. 5. Average bond lengths and angles in an acetylacetone group.
van der Waals contacts $O(1) \cdots O(5)^{\prime}[$ comparable to $O(1) \cdots O(2)]$ in Fig. 2 is $3.26 \AA$, which is too long for a hydrogen bond and not at a reasonable angle to the other bonds round $O(1)$, and the rest involve methyl groups, viz., $\mathrm{C}(4) \cdots \mathrm{O}(3) 3 \cdot 42$ and $3 \cdot 46 \AA$, and $\mathrm{C}(2) \cdots \mathrm{O}(1) 3 \cdot 46 \AA$.

Discussion

Our structure analysis has shown with certainty the stereochemistry of this five-coordinated complex of zinc. Although four- and six-co-ordinated zinc complexes are well known, this is only the second five-co-ordinated complex found; the first, dichloroterpyridylzinc, ${ }^{7}$ is also a distorted trigonal bipyramid. Both compounds are probably derived from $4 s 4 p^{3} 4 d$ hybridisation in the zinc ion. Distortions from the ideal bond angles, shown diagrammatically in Fig. 6, are different for the two compounds, presumably because of the need to reduce the distortions within the organic ligands; thus for the terpyridyl complex the equatorial bonds are formed by the two chlorine atoms and the central nitrogen atom of the terpyridyl group, and the other two $\mathrm{Zn}-\mathrm{N}$ bonds are bent away from the ideal positions normal to the equatorial plane towards the $\mathrm{Zn}-\mathrm{N}$ bond as shown in Fig. 6. On the other hand, for the chelate groups in the acetylacetone complex the distortion of the axial bonds is towards the bisector of the $\mathrm{O}(2)-\mathrm{Zn}-\mathrm{O}(4)$ angle in the equatorial plane.

The striking feature is that this five-co-ordinated complex is apparently more stable than either the anhydrous form, which would probably be tetrahedral, or the dihydrate, which would be octahedral. It is noteworthy that when Cotton and Hanson ${ }^{8}$ examined the soft X-ray absorption edge of a zinc acetylacetone complex, made by Morgan and Moss's procedure, ${ }^{1}$ they found that the compound did not give the results characteristic for tetrahedral zinc complexes and they tentatively suggested that it might be square or octahedral.

Discussion of the chemical significance of the bond lengths must be based on a reasonable estimate of their reliability and it is better to overestimate the limits of error. The minimum standard deviations and the most probable errors (derived from the internal consistency) are given in the section "Results" and suggest that the statistical standard deviations in the individual bond lengths should be increased by a factor of about $1 \cdot 6$; *

[^1]the mean values for the $\mathrm{Zn}-\mathrm{O}$ bonds are $2.11 \pm 0.02 \AA$ axial and $1.96 \pm 0.02 \AA$ equatorial (excluding the $\mathrm{Zn}-\mathrm{H}_{2} \mathrm{O}$ bond); this difference ($0.15 \AA$) is definitely significant and is in the direction predicted theoretically ${ }^{9}$ for $s p^{3} d$ hybridisation. The shorter bond length is the same as that found in compounds containing a tetrahedral arrangement of $\mathrm{Zn}-\mathrm{O}$ bonds, $1.95 \AA$ in zinc oxide, ${ }^{10}$ and $1.97 \AA$ in zinc basic acetate. ${ }^{11}$ The longer bond length appears comparable with the values for octahedrally co-ordinated zinc, but these differ considerably, being $2 \cdot 17$ and $2 \cdot 18 \AA$ in zinc acetate dihydrate ${ }^{12}$ and $2.05 \AA$ in the 8 -hydroxyquinoline complex. ${ }^{13}$

Our $\mathrm{Zn}-\mathrm{H}_{2} \mathrm{O}$ bond length, $2.02 \pm 0.03 \AA$, is not significantly greater than the corresponding $\mathrm{Zn}-\mathrm{O}$ bond length ($1.96 \pm 0.02 \AA$). Other $\mathrm{Zn}-\mathrm{H}_{2} \mathrm{O}$ bonds are all in octahedral

Fig. 6. Diagram showing, in projection on the equatorial plane, the relation between an ideal trigonal bipyramid (broken lines), the distorted version in monoaquobisacetylacetonezinc (circles represent the positions of the oxygen atoms) and in dichloroterpyridylzinc (crosses).

compounds and, as expected, are longer than this one; the values are $2.08 \AA$ in the hexa-quo-ion, ${ }^{14} 2 \cdot 14 \AA$ in zinc acetate dihydrate, ${ }^{12}$ and $2 \cdot 27 \AA$ in the 8 -hydroxyquinoline complex. ${ }^{13}$ For the last compound this represents a large difference between the $\mathrm{Zn}-\mathrm{O}$ and $\mathrm{Zn}-\mathrm{H}_{2} \mathrm{O}$ bonds, similar to that established in bisacetylacetonecobalt(II) dihydrate, ${ }^{15}$ whereas for the acetate the difference, though not significant, is in the opposite direction. Only more determinations can establish whether the bonds lengths really vary from compound to compound, and perhaps provide an explanation if this is so.

Experimental

Preparation.-Morgan and Moss's procedure ${ }^{1}$ was followed. Several preparations were made and care was taken that the crystals which were analysed and on which the density was determined were of the same batch as those used for X-ray work. The colourless acicular crystals (type A) were analysed (Found: $\mathrm{C}, 42 \cdot 0 ; \mathrm{H}, 5 \cdot 2 ; \mathrm{Zn}, 23 \cdot 1 . \mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Zn}$ requires $\mathrm{C}, 42 \cdot 7 ; \mathrm{H}, 5 \cdot 7 ; \mathrm{Zn}, 23.2 \%$) and found to correspond to monoaquobisacetylacetonezinc. To prevent decomposition in the X-ray beam, the crystals used were kept in Lindemann glass tubes containing a few drops of acetylacetone.

X-Ray Work.- $\mathrm{Cu}-K_{\alpha}$ radiation was used. For type B crystals approximate unit-cell dimensions were obtained from single-crystal oscillation and Weissenberg photographs. For type A the dimensions of the a and c axes and the angle β were obtained by a least-squares

[^2]procedure from the spacings measured for 15 reflections on a copper-calibrated Weissenberg photograph; the b axis was measured from (060) by the Straumanis method.

Equi-inclination Weissenberg photographs were taken about the b and c axes for all layer lines up to ($h 3 l$) and ($h k 3$). Of the 1400 possible reflections, 841 gave measurable intensities, 200 were too weak to be observed, and 360 were inaccessible. A multiple-film technique was used; intensities were estimated visually by comparison with a calibrated strip and corrected for Lorentz and polarisation factors. For the ($h 0 l$) reflections, an approximately absolute scale was obtained by Wilson's method, ${ }^{16}$ and after the projection had been solved a more accurate value was obtained by making $\sum\left|F_{0}\right|$ equal to $\sum\left|F_{\mathrm{c}}\right|$; this was used after correlation to put the three-dimensional values on the absolute scale. The correlation was carried out on the square roots of the corrected intensities by Dickerson's method. ${ }^{17}$

Very small crystals (maximum dimension 0.4 mm . parallel to b) were used and no absorption correction was applied.

Refinement Procedure.-The function minimised by least squares was $R^{\prime}=\sum w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2}$, where the weighting factor, w, was $1 /\left(4.2+\left|F_{0}\right|+0.0264\left|F_{0}\right|^{2}\right)$. The scattering factors were those of Berghuis et al. ${ }^{18}$ for oxygen, carbon, and zinc, the last being corrected for the real part of the anomalous dispersion; ${ }^{19}$ calculation showed that even in the most favourable examples the effect of the imaginary part of this correction was less than 10% in the intensity and thus within our error in estimation. The parameters were the scale factor, two co-ordinates for zinc, three co-ordinates for each of the carbon and oxygen atoms, and six for the thermal motion of each atom; the hydrogen atoms were neglected.

Computation.-One three-dimensional Fourier difference synthesis was carried out by Dr. O. S. Mills with his own programme on the London University Ferranti Mercury computer. The Leeds University Ferranti Pegasus computer was used for Fourier syntheses with a programme written by Dr. P. A. Samet, for least-squares refinement with programmes written by Dr. D. W. J. Cruickshank and Miss D. E. Pilling, and for interatomic distances and angles with a programme written by one of us (M. R. T.).

We are grateful to Professor E. G. Cox for his helpful advice. We thank the people who helped us with computation by carrying out the calculations or by letting us use their programmes, Dr. D. W. J. Cruickshank, Dr. O. S. Mills, Miss D. E. Pilling, Dr. P. A. Samet, and also the Director and staff of the Leeds University Computing Laboratory.

Some of the equipment was provided by the Royal Society and Imperial Chemical Industries Limited.

Department of Inorganic and Structural Chemistry, The University of Leeds.
[Received, February 22nd, 1960.]
16 Wilson, Nature, 1942, 150, 152.
17 Dickerson, Acta Cryst., 1959, 12, 610.
18 Berghuis, Haanappel, Potters, Loopstra, MacGillavry, and Veenendaal, Acta Cryst., 1955, 8, 478.
${ }^{19}$ Dauben and Templeton, Acta Cryst., 1955, 8, 841.

[^0]: ${ }^{1}$ Morgan and Moss, $J ., 1914,105,189$.

[^1]: * These increased values were used in calculating the standard deviations in the mean bond lengths.
 ${ }^{7}$ Corbridge and Cox, J., 1956, 594.
 ${ }^{8}$ Cotton and Hanson, J. Chem. Phys., 1958, 28, 83.

[^2]: ${ }^{9}$ Kimball, J. Chem. Phys., 1940, 8, 188.
 ${ }^{10}$ Bunn, Proc. Phys. Soc., 1935, 47, 835.
 ${ }^{11}$ Koyama and Saito, Bull. Chem. Soc. Japan, 1954, 72, 112.
 12 Van Niekerk, Schoening, and Talbot, Acta Cryst., 1953, 6, 720.
 13 Merrit, Cady, and Mundy, Acta Cryst., 1954, ry, 473.
 14 Broomhead and Nicol, Acta Cryst., 1948, 1, 88.
 15 Bullen, Acta Cryst., 1959, 12, 703,

